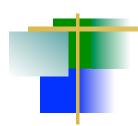

Evaluating Climate Policy Impacts on U.S. Manufacturing Competitiveness

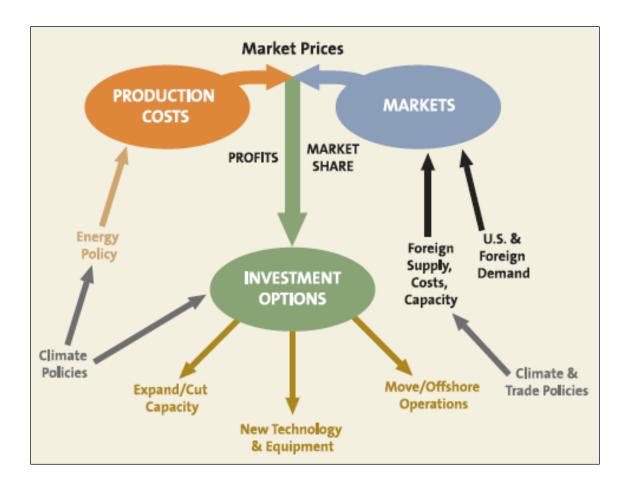
Transatlantic Research on Policy Modeling Workshop


Session 5: Energy & Environmental Policy Analysis: Applications

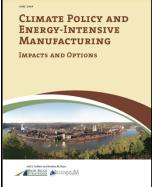
New America Foundation, Washington, DC—January 29, 2013

Joel Yudken, Ph.D.

Principal, High Road Strategies, LLC 104 N. Columbus Street, Arlington, VA 22203 (703) 528-7896 • jyudken@highroadstrategies.com www.highroadstrategies.com


EVALUATING FEDERAL CLIMATE POLICIES

HRS-MI Climate Policy & EITE Manufacturing "Trilogy"


- Climate Policy and Energy Intensive Manufacturing: Impacts and Options (June 2009)
 - National Commission on Energy Policy (NCEP)/Bipartisan Policy Centersponsored
 - High Road Strategies (HRS)-Millennium Institute (MI) performed work
 - Examined impacts of Lieberman-Warner Climate Security Act of 2007 (S. 2191)
- Competitiveness Impacts of American Energy & Security Act (ACESA) of 2009 (February 26, 2010)
 - Environmental Defense Fund (EDF)-sponsored; HRS-MI performed
 - Examined impacts of ACESA (Waxman-Markey bill; H.R. 2454), focus on outputbased rebate measure
- **Evaluation of ACESA Cost Mitigation Measures** (November 24, 2010)
 - NCEP, AFL-CIO WAI-sponsored; HRS-MI performed
 - Evaluates alternative scenarios, output-rebates, border-adjustment measures

High Road Strategies, LLC

Study Framework

NCEP Climate Policy-EITE Manufacturing Study: Impacts & Options

- What are climate policy impacts on the competitiveness of energy-intensive manufacturing industries
 - Iron & steel, primary & secondary aluminum, paper & paperboard, petrochemicals, chorine-alkalies manufacturing
- What policies are needed to maintain manufacturing competitiveness and retain jobs, while cutting emissions?
 - To mitigate cost impacts and level the playing field in international trade
 - Enable and encourage industry investments in new technology

L-W Study Methodology

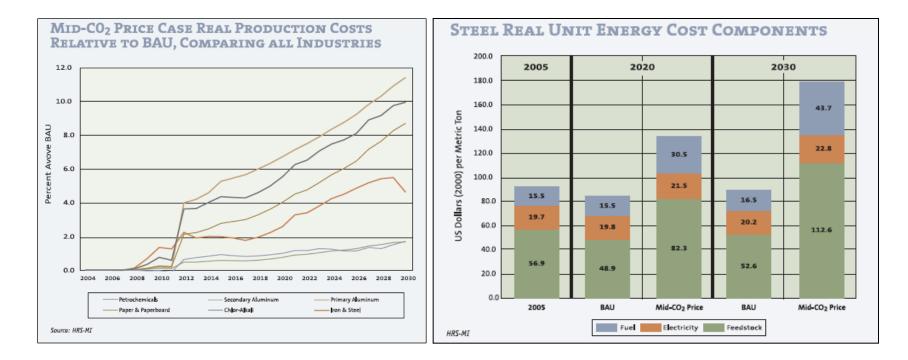
- Data collection
 - ASM, MECS, USGS, USITC
 - AISI, Aluminum Association, AF&PA, ACC
- System Dynamics modeling
 - Computer-based SW platform: Vensim[®]
 - Integrated Industry-Climate Policy Model (II-CPM)
- Group modeling sessions
 - Industry groups (AISI, Aluminum Assoc., ACC, AF&PA); Labor unions (USW, AFL-CIO IUC)
- Characterize policy cases
 - EIA/NEMS, GI
- Model runs
 - Cost pass-along scenarios (NCPA, CPA)
 - Sensitivity and alternative scenarios

Climate Policy Cases

Business As Usual (BAU) Case

- No GHG-emissions pricing policies
- Based on AEO 2008 Reference Case

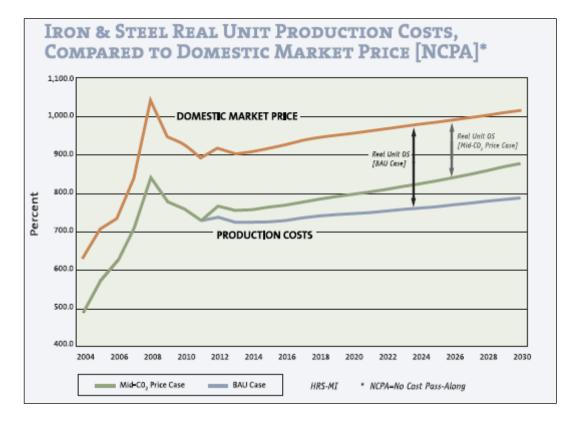
Mid-CO₂ Price Case

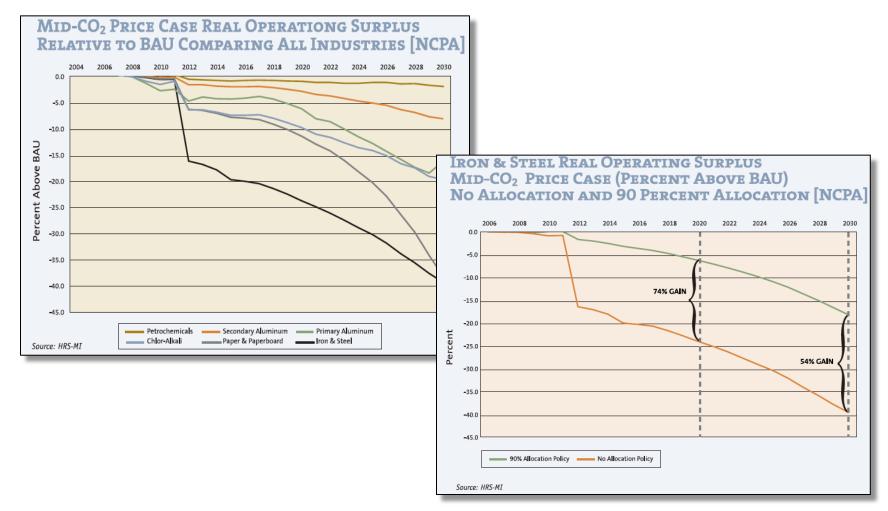

- Based on Lieberman-Warner Climate Security Act (S. 2191)
- Emissions allowance price: 2020-2030, \$30-\$61/mt CO₂-equivalent
 - 30% emissions below 2005 by 2030; 70% below by 2050

EIA NEMS Fossil-Energy Price Scenarios

 Electricity, natural gas, metallurgical coal, coal coke, liquid petroleum gas, residual fuel oil, distillate fuel oil

L-W Production Cost Impacts

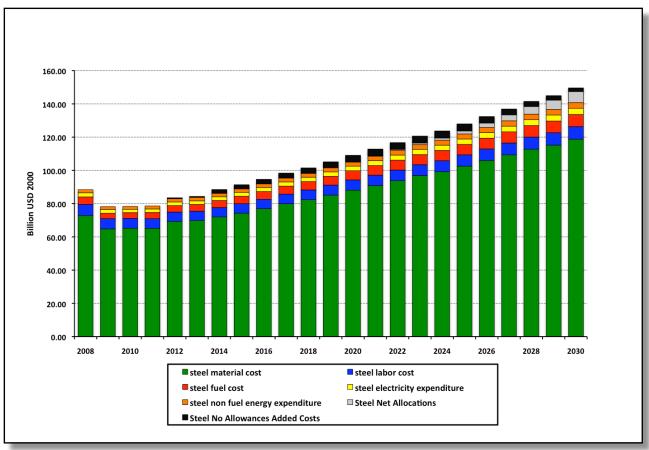

- Production cost components
 - Materials and capital + labor + energy costs
 - Energy costs: fuel, electricity, feedstock (EIA, MECS)


High Road Strategies, LLC

Operating Surplus Defined

- Operating Surplus: Domestic Market Price Minus Unit Production Cost (Revenues-PCs)
 - Sales, General and Administrative costs
 - Depreciation, interest on capital
 - Other fixed costs
 - Profits, taxes
 - Reduced OS means lower profits
- Operating Margin: Ratio of total OS and total revenues

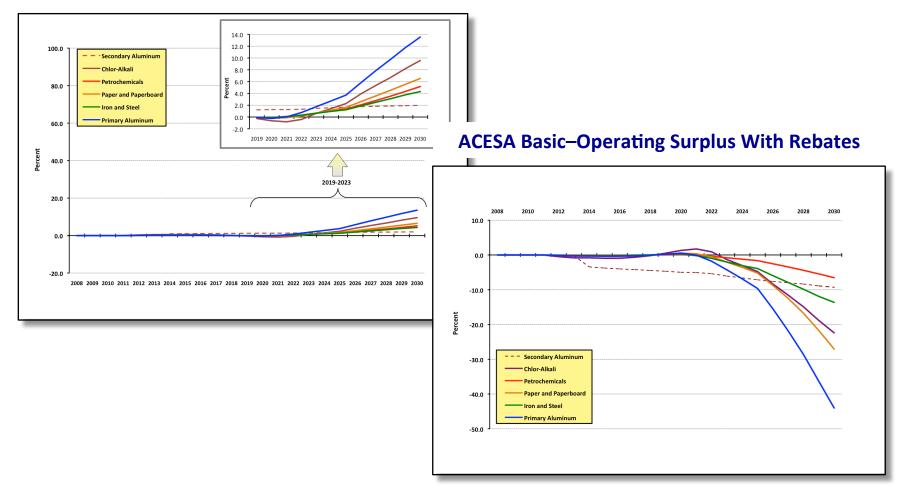
L-W Operating Surplus Impacts



EDF ACESA-EITE Industry Study

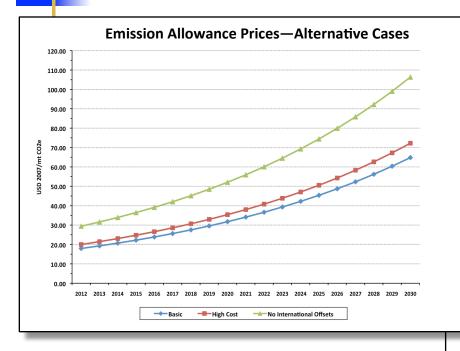
- Updated financial, energy, industry, other data
- Characterized Reference and ACES Cases
 - EIA-generated energy prices, allowance costs
 - Calculated industry GHG-emissions
 - Calculated production-based emissions allowance costs
- Calculated output-based rebate allocations
 - Up to 15% total allowances to EITE industries, starting 2014, declining rapidly after 2015 to zero, 2035
 - Industry rebates based on prior 2-year emissions; yearly shares of total (direct, indirect) emissions of all EITE industries
- Industry simulations (NCPA only)
- Energy-efficiency requirements to offset cost impacts
 - Estimates of required gains for a given year, for energy types, assuming 0.5% annual energy efficiency improvements

Production Cost Structure


Iron & Steel Industry ACESA Basic Case–Production Costs With Allowances

High Road Strategies, LLC

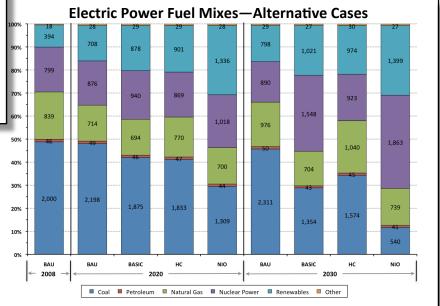
Allowance Rebate Effectiveness


ACESA Basic–Production Costs With Rebates

ACESA-EITE Industry Study (II)

- Output-based emission allowance rebates
- Alternative Policy Cases
 - High Cost Case
 - No International Offsets Case
- International reserve allowance program ("border adjustment")
 - Presidential determination if allowance rebates no sufficient to mitigate EITE costs
 - EITE and compliance criteria; start year; fee calculation
 - Countries with 85% or less of imports are compliant or has energy/ emissions intensity equal or less than U.S. industry sector
 - Legal and effectiveness issues
 - Is it WTO compliant? Will in encourage other nations' comparability? Will it adequately mitigate costs? Will it encourage low-carbon technology investments?

Alternative Policy Cases

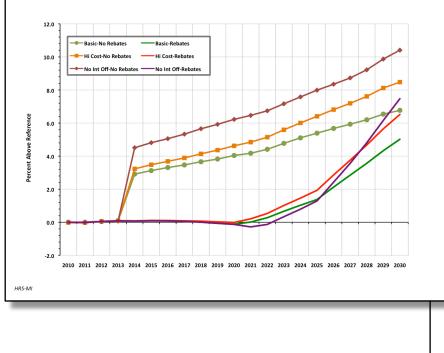


ACESA No International Case

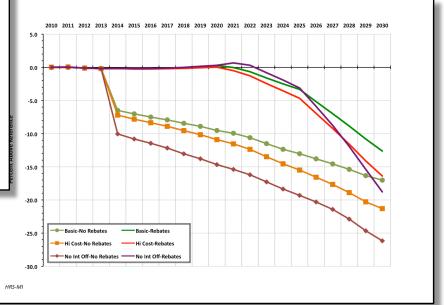
- International offsets severely limited by cost, regulation, slow progress reaching international agreements re offsets
- Significant portion of international offsets might not meet all requirements

ACESA High Offsets Case

- Costs of nuclear, fossil with CCS, biomass generating technologies assumed to be 50% higher than Basic Case
- Great uncertainty about costs, feasibility of rapid introduction on large scale



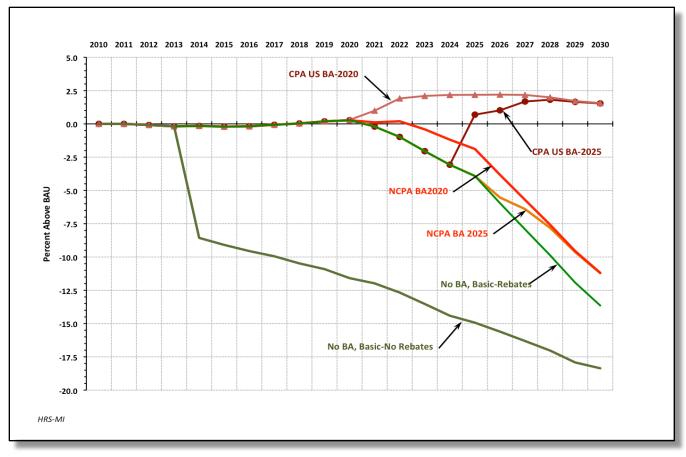
January 29, 2013


High Road Strategies, LLC

Alternative Case Impacts

5-EITE Industries Production Costs

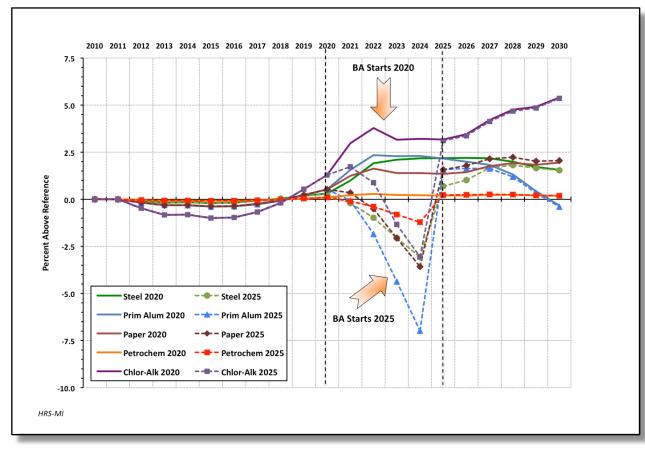
5-EITE Industries Operating Surplus



Border Adjustment Scenarios

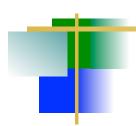
- Different Start Dates: 2020 & 2025
- Cost Pass-Along Scenarios
 - No Cost Pass-Along (NCPA BA)
 - BA Fees on Non-Compliant Countries
 - Fees based on total emissions costs of U.S. industries
 - Cost Pass-Along (CPA US BA)
 - BA Fees on Non-Compliant Countries
 - U.S. Manufacturers Pass Along Costs
 - Total emissions costs less rebates

Border Adjustment Findings

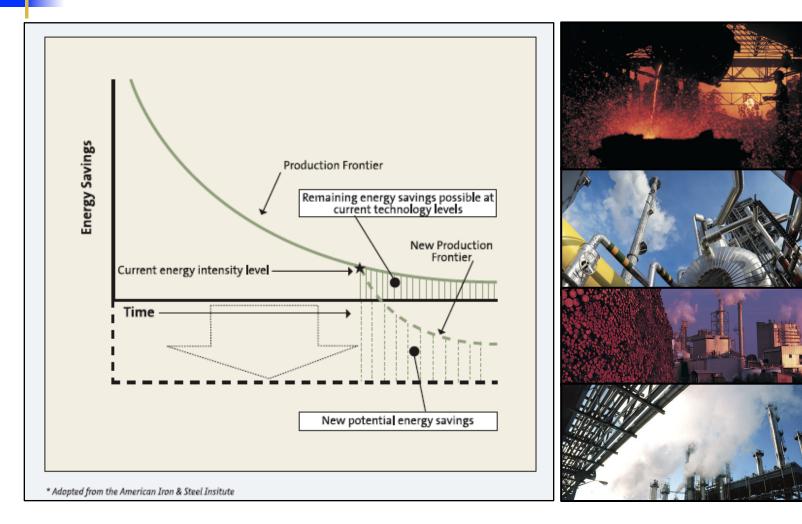

Iron & Steel Operating Surplus—Border Adjustment Scenarios

High Road Strategies, LLC

Border Adjustments-Comparisons

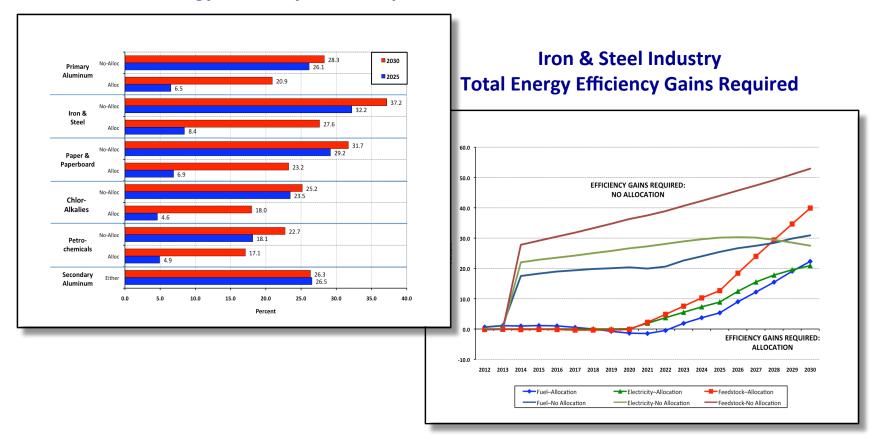

EITE Industries Operating Surpluses CPA BA Scenarios Starting 2020 and 2025

High Road Strategies, LLC


BA Caveats and Issues

- Compliant countries dominate imports
- Future non-compliant import shares may grow
- Different bases for BA calculations
- Export market impacts not assessed
- Downstream industry impacts
- Elasticities of import substitution

ENERGY EFFICIENCY & INVESTMENT OPTIONS


Energy Savings Potential?

High Road Strategies, LLC

Energy Efficiency Requirements

ACESA–Total Energy Efficiency Gains Required

Technology Investment Options

- "Low-hanging fruit"
 - Heat recovery, CHP, sensors and process controls, more efficient pumping, motor, compressed air systems, etc.
- Improved recycling (steel, aluminum, paper)

- Advanced and alternative process technologies:
 - Low-carbon iron-making technology (iron & steel)
 - Wetted drained cathode/inert anodes (aluminum)
 - Black-liquor gasification; efficient drying technology; biorefineries (paper)
 - Shift to membrane technology (chlor-alkali)
 - Advanced furnaces, CHP, biomass-based systems (petrochemicals)
- **Barriers to Adoption:**
 - Costs; timing (technical feasibility, vintage); lack of capital

Summary of Findings

- With no cost mitigation measures, modest to high impacts on production costs, operating surplus (profits), market shares from higher energy prices
 - Contingent on energy mix, cost-pass along assumptions, market conditions
- Pressure on industries to take actions to reduce costs and prevent profits from decreasing to undesired levels
- Over short-to-mid term, output-based rebates would substantially mitigate the emissions costs on PC and OS
- Cost mitigation would diminish and costs rise as the allowance rebates phases out after 2020, accelerating after 2025— but extent and nature of impacts vary by industry
 - Unless Presidential discretionary measures put in place or industries invest sufficiently in low-carbon, energy-efficient technologies

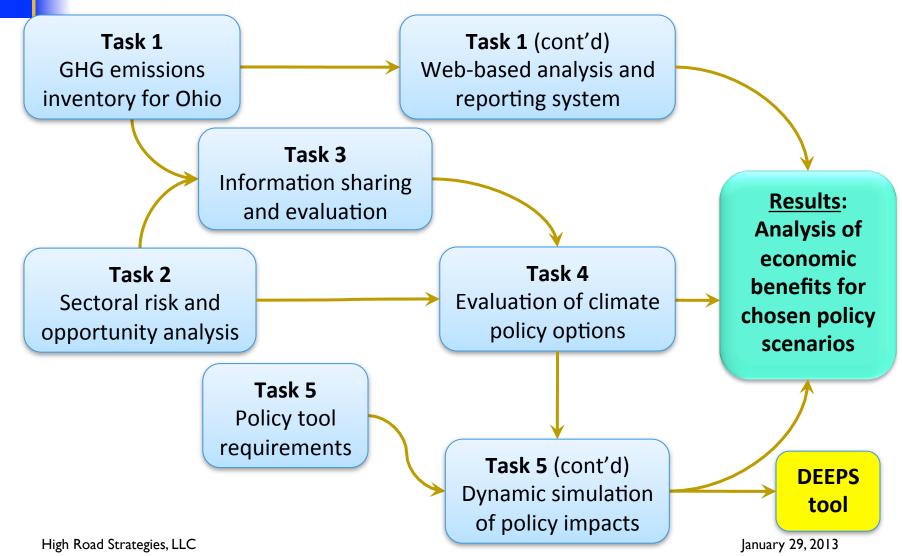
Summary of Findings (cont'd)

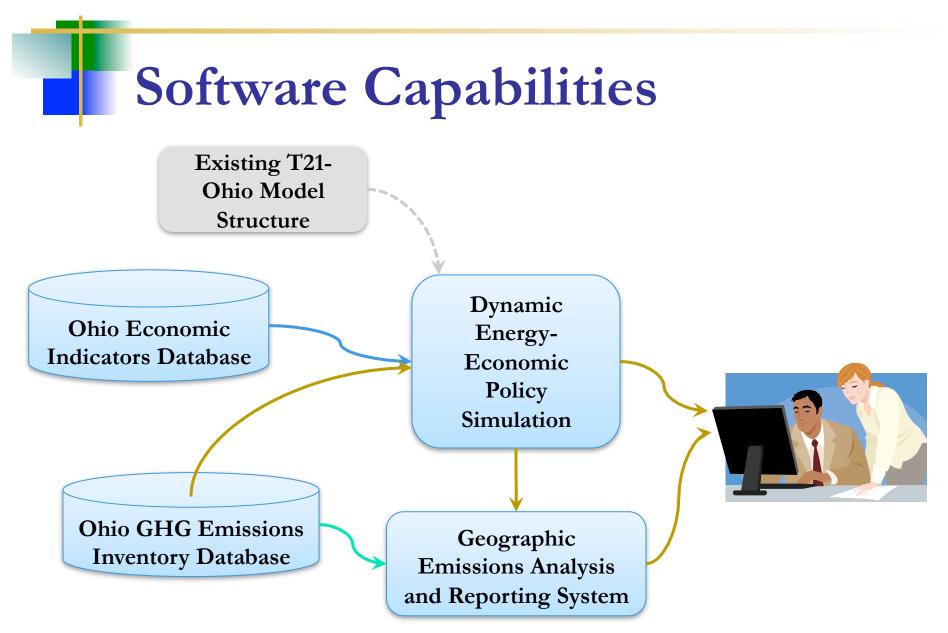
- International offsets have strong cost containment effect without, cost impacts much higher after 2025 than Basic case
- If non-carbon alternatives are higher cost (nuclear, CCS, biomass), cost impacts after 2025 also higher
- **BAs mixed cost mitigation impacts—uncertainties and caveats**
- Rebate measure/BAs only buy time for industry adjustment
- Technology investment options necessary and available, but timing, costs critical
- Other policies may be needed to encourage long-term investment in advanced energy-saving technologies

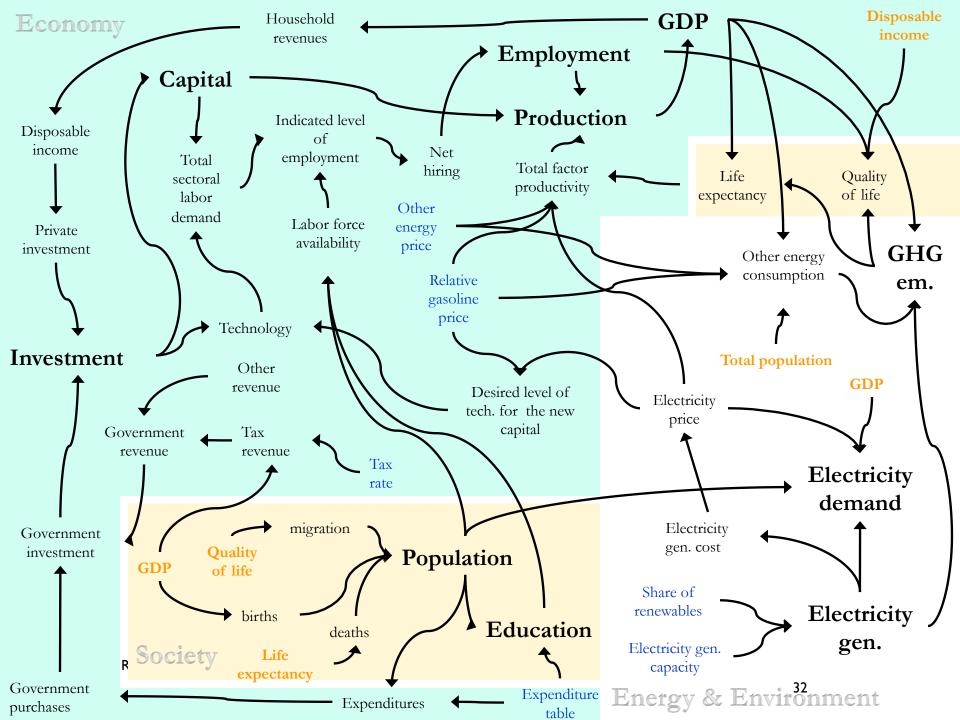
EVALUATING ENERGY & CLIMATE POLICY IMPACTS ON OHIO'S ECONOMY

Ohio Energy & Climate Policy Project

- Report to Ohio Department of Development (now JobsOhio): Assuring Obio's Competitiveness in a Carbon Constrained World
- Co-led by Ohio University Voinovich School of Leadership and Public Affairs and The Ohio State University
- Other Partners: Millennium Institute and High Road Strategies
- Principal Tasks:
 - Carbon Inventory for the State of Ohio
 - Risk and Opportunity Analysis for Ohio Manufacturing Sector
 - Review of Climate and Energy Policy Options for Ohio
 - Economic Analysis of Climate and Energy Policy Analysis
- See project website: **www.ohioenergyresources.com**




High Road Strategies, LLC


Project Overview

Dynamic Energy-Economic Policy Simulation (DEEPS)

- Designed to help the State of Ohio analyze the economic impacts of possible climate change, energy and GHG emission reduction policy scenarios
- End-user interface designed for ease of use and operability
- Uses System Dynamics (SD) modeling methodology
 - SD=integrated evaluation of policy options related to a variety of issues that arise in complex social, managerial, economic, and ecological systems
- Based on a previous SD model, called T21-Ohio*, which integrates social, economic and environmental factors into one coherent framework
 - * Developed by OSU in collaboration with MI, funded by EPA

Range of Policies Considered

Federal Policies

- Renewable portfolio standards
- EPA greenhouse gas standards
- Accelerated coal power plant retirement

State Policies

- Renewable portfolio standards
- Feed-in tariff
- Carbon capture and sequestration
- Smart grid
- Energy efficiency standards (buildings, industry)
- Transportation technologies (biofuels, electric vehicles)
- Non renewable energy investments (nuclear, natural gas)
- Waste utilization
- Forestry

Policy Scenarios

- Business as usual (BAU) or base case:
 - Continuation of current policies in Ohio

EPA GHG Standards

 2-year U.S. EPA plan establishing GHG emission standards for fossil-fuel power plants and oil refineries

• Ohio SB 221 (effective 7/30/08)

- Key energy provisions: RPS; ee portfolio standards; new alternative energy policy; GHG reporting requirements
- Ohio Energy, Jobs, and Progress Plan (August 2008)
 - Specifies ee and renewable targets until 2025; larger RPS including clean coal and nuclear

EITE Industry CO₂e Emissions

Manufacturing Sectors (6-digit NAICS)—Top 10 Ranked by Direct Emissions						
Rank	Industry	NAICS	Direct CO ₂ e emissions (MMTCO ₂ e)	% Total Manuf.	No. Establish- ments†	Employees†
1	Iron and Steel Mills*	331111	8.24	36.8	55	11,903
2	Petroleum Refineries*	324110	4.45	19.9	16	1,653
3	Lime*	327410	1.96	8.8	8	437
4	Paper (except Newsprint)*	322121	1.29	5.8	29	4,423††
5	Nitrogenous Fertilizer*	325311	0.51	2.3	33	1,609
6	Paperboard*	322130	0.40	1.8	++	++
7	Plastics Materials and Resins*	325211	0.32	1.4	63	3,562
8	All Other Misc. Chemical Products	325998	0.27	1.2	92	2,297
9	Turbines and Turbine Generators	333611	0.27	1.2	10	ND
10	Cements*	327310	0.26	1.2	7	391
Top 10 Subtotals		17.98	80.3	313	21,852	
TOTALMANUFACTURING		31-33	22.38	100.0	17,413	738,817

* Energy-intensive trade-exposed (EITE) industries as designated by the U.S. EPA ND=NotDisclosable—doesn't meet BLS or State disclosure standards.

+ Source: BLS Quarterly Census of Employment and Wages (QCEW)

++ Combined pulp, paper and paperboard industries

Emission Data Source: OU-OSU Ohio Point Source Database

For more information...

www.highroadstrategies.com

www.millenniuminstitute.net

High Road Strategies, LLC