Climate Policy, Energy-Intensive Industries and U.S. Competitiveness

Presentation to the Workshop on

The New Energy Climate for Ohio Manufacturers II

Columbus, OH • January 13, 2010

Joel S. Yudken, Ph.D. Principal, High Road Strategies, LLC 104 N. Columbus Street, Arlington, VA 22203 (703) 528-7896 • jyudken@highroadstrategies.com

Climate-Manufacturing Challenge

- Crisis in U.S. manufacturing
 - Loss of capacity, jobs
 - Foreign competition, offshoring
- Energy-Intensive Trade Exposed (EITE) industries especially affected
 - Consolidation, restructuring, import penetration, offshoring

Columbia Falls Aluminum Plant

- EI manufacturing and climate policy
 - EI industries cornerstone of manufacturing—beginning of supply chains for all other manufacturing
 - Sensitive to fossil-fuel energy prices, international competition
 - Carbon leakage if U.S. EI manufacturers move offshore

Ohio's Challenge

- Ohio one of nation's largest manufacturing states
- Strong, diverse manufacturing base critical to Ohio's economic future
- Crisis in Ohio's manufacturing
 - 300,000 jobs lost since 1998; nearly 2,500 establishments lost, 2001-09
- "Green" potential for revitalizing manufacturing
 - Windmills, renewables; hybrid autos
- EITE industries in Ohio—are they at risk?
 - As we move to a "Green" economy—do we want to build windmills in Ohio made from steel made in China?

Climate Policy and EI Manufacturing Study

- What are climate policy impacts on the competitiveness of energy-intensive manufacturing industries
 - Iron & steel, primary & secondary aluminum, paper & paperboard, petrochemicals, chorine-alkalies manufacturing
- What policies are needed to maintain manufacturing competitiveness and retain jobs, while cutting emissions?
 - To mitigate cost impacts and level the playing field in international trade
 - Enable and encourage industry investments in new technology

Summary of Findings

- Modest to high impacts on production costs, operating surplus (profits), market shares from higher energy prices:
 - Contingent on energy mix, cost-pass along assumptions, market conditions
- Pressure on industries to take actions to reduce costs and prevent profits from decreasing to undesired levels
- Technology options available, but timing critical
- Allowance allocation policy would buy time for industry adjustment
- Other policies may be needed to encourage long-term investment in advanced energy-saving technologies

Study Framework

- Business As Usual (BAU) Case
- Mid-CO₂ Price Case
 - Based on Lieberman-Warner Climate Security Act (S. 2191)
 - Emissions allowance price: 2020-2030, \$30-\$61/ mt CO₂-equivalent
- **EIA NEMS Fossil-**
 - **Energy Price Scenarios**

Production Cost Impacts

- Iron & steel—6.7% above BAU, 2020; 11.4%, 2030
- Chlor-Alkali—5.5%, 2020; 9.0%, 2030
- Paper and paperboard—4.0%, 2020; 8.7%, 2030
- Primary aluminum—2.8% (4.6% inc. anode/alumina); 2020; 4.6% (8.7%), 2030

Operating Surplus Defined

- Operating Surplus: Domestic Market Price Minus Unit Production Cost
 - Sales, General and Administrative costs
 - Depreciation, interest on capital
 - Other fixed costs
 - Profits, taxes
 - Reduced OS means lower profits
- Operating Margin: Ratio of total OS and total revenues

Operating Surplus Impacts

High Road Strategies-Millennium Institute

Energy Efficiency Gains Needed

High Road Strategies-Millennium Institute

Energy Savings Potential

П

Technology Investment Options

"Low-hanging fruit"

- Heat recovery, CHP, sensors and process controls, more efficient pumping, motor, compressed air systems, etc.
- Improved recycling (steel, aluminum, paper)

- Advanced and alternative process technologies:
 - Low-carbon iron-making technology (iron & steel)
 - Wetted drained cathode/inert anodes (aluminum)
 - Black-liquor gasification; efficient drying technology; biorefineries (paper)
 - Shift to membrane technology (chlor-alkali)
 - Advanced furnaces, CHP, biomass-based systems (petrochemicals)
- **Barriers to Adoption:**
 - Costs; timing (technical feasibility, vintage); lack of capital

Success Stories

ArcelorMittal (East Chicago, IN)

- Partnered with Recycled Energy Development, built onsite energy plant to capture waste heat and gases
 - Cut purchases of coal-fired power by ½ at BOF mill; reduced CO2 emissions by 1.3 million tons/yr; saved \$100 million/year
 - Using waste heat recovery at 3 more steel facilities

Flambeau River Papers (Park Mill, WI)

- Built 1896, 300 employees in town of 3,000, paper mill shut down in 2006
 - High energy costs, foreign competition, aging equipment, outmoded processes
- Reopened in 2 years with state and private support
 - 1st fossil fuel free, energy independent integrated pulp and paper mill in NA
 - Becoming first modern U.S.-based pulp mill biorefinery
 - Reemployed workers, 100 new jobs, reduced carbon impact

90 Percent Allocation Policy

High Road Strategies-Millennium Institute

Key Conclusion

- Energy-intensive manufacturing industries may need additional measures:
 - To mitigate adverse cost impacts in the short-to-medium term
 - To encourage and facilitate the *transition* of energy-reliant companies (and their employees) to a low-carbon future, while maintaining their global competitiveness

Climate Policy Comparison

American Clean Energy & Security Act of 2009 (ACES; H.R. 2454)	Lieberman-Warner Climate Security Act of 2007 (S. 2191)
 GHG cap-and-trade program 17% reduction-2020; 58%-2030; 83%-2050 relative to 2005 ACES Basic-allowance prices: \$31.7-2020; \$64.8- 2030 (USD 2007) 	 GHG cap-and-trade program 39% reduction-2030; 72%-2050 relative to 2006 Allowance prices: \$31.7-2020; \$64.8-2030 (USD 2007)
Allowances to electricity, NG distributors; low-income consumers; energy- intensive industries; states; etc.	Auction allowances used for low-carbon technology programs; transition assistance; states; etc.
CCS demonstration, early deployment; building, appliance standards; other technology improvements	Low-emissions technologies—nuclear, coal, CCS; incentives for CCS, biogenic carbon sequestration; building, appliance standards
Domestic and international offsets; banking	Domestic and international offsets each capped at 15%;
 BAU: AEO2009 2.4% long-term growth; short-term growth <aeo2008; &="" arra,="" current="" leg.="" li="" reflects="" regs.<=""> </aeo2008;>	 BAU: AEO2008 2.5% long-term growth; includes 2007 energy bill; current legislation, regulations

Policy Issues

- Cost Containment and Mitigation
 - "Safety valve," offsets, banking
 - Free allowances (output-based rebates)
- Border Adjustment & International Provisions
- Technology Investment and Adoption
 - RD&D for cutting-edge process technologies
 - Grants and tax incentives for installing new equipment
 - Accelerated capital stock recovery
 - Tech assistance, revolving loan funds to SMEs (Sen. Sherrod Brown's IMPACT bill)
- Workforce and Community Transition

Updated Climate-EITE Study

- Waxman-Markey (HR 2454)
- Energy-related costs: emissions allowance costs
 + energy market prices
- Cost Mitigation Policy Options
 - Output-based emission allowance rebates
 - Border adjustment fees
- Alternative Policy Cases

Primary Aluminum Production Costs and Operating Surplus

Conversion to Low-Carbon Manufacturing

- Make a national priority
 - Presidential task force; interagency working groups; national labs
- Climate legislation should include:
 - Cost mitigation; level global market playing field; transition assistance to businesses, workers and communities

Investment and innovation policies:

 RD&D, financing, tax incentives, technical assistance to promote low-carbon generation, smart grid, green construction and transportation, and next generation production technologies

Benefits:

• Energy security, reduced GHG emissions, revitalized manufacturing, economic growth and job creation